
RESEARCH AND DEVELOPMENT TECHNICAL REPORT
CECOM-TR-98-4

A Fuzzy Hypercube Artificial
Neural Network Classifier

Joseph A. Karakowski and Hai H. Phu

October 1998

Approved for public release;
distribution is unlimited.

CECOM
U.S. ARMY COMMUNICATIONS-ELECTRONICS COMMAND
RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
FORTMONMOUTH, NEW JERSEY 07703-5000

OTIC OALITT urmcm 4

NOTICES

Disclaimers

The findings in this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorized documents.

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
endorsement or approval of commercial products or services
referenced herein.

REPORT DOCUMENTATION PAGE
Form Approved
OMB NO. 0704-0188

g^U^ m.«a™nfl B» data «•*£««l^SSSS? .S^V^ETS SSSJ^H^J^^Ts^SrSSSoSSS^formation Operation, and R«Pora/l21S Jefferson
SLctiorlof rtormation. ndudng wwettar^reduangthaburdea » M££3^2*&£££ pSpSSorKReduction Project (07044)188). Wurnnoton, PC20503. Davit Hiahwev Suite 1204, Artngton, VA 22202-430Z fid 10 the Office of Management and Budget, rtww» r»™»*~.
_ - « nmnnTTWlC AMn niTC« WWPRPfl

1. AGENCY USE ONLY (Leave ManfrJ 2. REPORT DATE
October 1998

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE

A FUZZY HYPERCUBE ARTIFICIAL NEURAL NETWORK CLASSIFIER

6. AUTHOR(S)

Joseph A. Karakowski and Hai H. Phu

7 PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) rrrnMx
US Army Communications-Electronics Command (CECUM;
Research, Development and Engineering Center (RDEC)
Intelligence and Information Warfare Directorate (IZWD)
ATTN: AMSEL-RD-IW-TP
Fort Monmouth, NJ 07703-5211

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

CECOM-TR-98-4

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) ... „ _, ' . „ * Tknn»„
An Artificial Neural Network classifier, based on fuzzy Min-Max, Adaptive Resonant Theory
(ART)! and fuzzy ART is described. The outputs of the classifier are fuzzy hypercubes
representing functional categories of its input functions. A hypothesis and test para-
dlgmSpares input data and'existing hypercube categories and results in either network
"resonance or dissonance," depending on the test outcome. A hypothesis is formed by two
malfunctions: Degree of Inclusion, and Degree of Perfect Match An overall hypothesis
is chosen with the best Degree of Match. Tests are then performed to verify the hypoth-
esis The vigilance test measures the top down match between the hypothesized category
and the input. The overall hypervolume test ensures that any category adjustments keep
the total category hypercube volume within bounds. The fuzzy hypercube classifier was
tested using two standard sets: Iris Flower and Wisconsin Diagnostic Breast. Cancer. The
network produced 88% and 76% correct classification, respectively. A speaker ^cognition
system using a fuzzy hypercube classifier was also tested using the Switchboard and
Greenflag databases. Test results are discussed.

14. SUBJECT TERMS
Speaker Recognition; Fuzzy Logic; Signal Processing; Neural Nets;
Neural Networks; Speech Recognition

17 SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
47

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

TABLE OF CONTENTS

SUMMARY vii
1. INTRODUCTION 1

1.1 ART2 : 1
1.2 Fuzzy ART 2

2. FUZZY HYPERCUBE ARTIFICIAL NEURAL NETWORK 5
2.1 Fuzzy Hypercube ANN Structure..—.................. 5

2.1.1 Input Layer 6
2.1.2 Category Layer 8
2.1.3 Transform Layer 9
2.1.4 Fusion Layer 12
2.1.5 Hypothesis Layer 12
2.1.6 Test Layer 13
2.1.7 Functional Layer 13

2.2 Auxiliary Network Functions—... 15
2.2.1 Category Merge 15
2.2.2 FHANN Initialization 16
2.2.3 FHANN Parameters 16

3. NETWORK COMPARATIVE PERFORMANCE ANALYSIS 17
3.1 Test Measurement Definitions.—.........—..—.............................. 17
3.2 Function Descriptions....... .—......... 19
3.3 Main Descriptions .—.......—...........—.................................... 20
3.4 Testing Methodology 22
3.5 Comparison Between SFAM and FHANN 22

4 SPEAKER RECOGNITION TEST 25
4.1 Introduction 25
4.2 Speaker Testing 26
43 Test Results Discussion......—...........—....... 31

4.3.1 FHANN Specific Tests 31
4.3.2 Overall System Tests 32

5. CONCLUSION 32
6. BIBLIOGRAPHY 33
Appendix Al - MATLAB Toplevel Code Listings of SFAM 35
Appendix A2 - MATLAB Toplevel Code Listings of Fuzzy Hypercube ANN 37

in

LIST OF FIGURES

Page

Figure 1 - Basic ART2 architecture 2

Figure 2 - FHANN layer structure 6

Figure 3 - FHANN 7

Figure 4 - Trapezoidal Degree of Inclusion 10

Figure 5 - FHANN functional block diagram 20

Figure 6 - FHANN main program flowchart 21

Figure 7 - FHANN's optimal output for Iris.dat 23

Figure 8 - FHANN's optimal output for WDBC.dat 23

Figure 9 - FHANN and SFAM Comparison 24

Figure 10 - Percent of Correct Classification vs. Vigilance Values 27

Figure 11 - Percent of Correct Classification vs. Hypervolume Values 27

Figure 12 - Number of Spurious Categories vs. Vigilance Threshold 28

Figure 13 - Number of Spurious Categories vs. Maximum Hypervolume 28

Figure 14 - Number of Correct Categories vs. Vigilance Threshold 29

Figure 15 - Number of Correct Categories vs. Maximum Hypervolume 29

Figure 16 - Percent of Correct vs. Greenflag Test Groups 30

Figure 17 - Percent of Correct vs. Switchboard 95 Test Groups 30

IV

LIST OF TABLES

Table 1 - FHANN, 8-speaker test 29

Table 2 - FHANN, 12-speaker test 29

Table 3 - FHANN, Summary of Test Results 30

Table 4 - Overall System Test Results 31

LIST OF ACRONYMS

ANN Artificial Neural Network

ART Adaptive Resonance Theory

DOI Degree of Inclusion

DPM Degree of Perfect Match

FHANN Fuzzy Hypercube Artificial Neural Network

FV Feature Vector

HV Hypercube Volume

LTM Long Term Memory

NN Neural Network

SFAM Simplified Fuzzy ART Map

STM Short Term Memory

v

SUMMARY

An Artificial Neural Network (ANN) classifier, based on fuzzy Min-Max [21], Adaptive
Resonant Theory (ART) [2,5], and fuzzy ART [7,17] is described. The outputs of the
classifier are fuzzy hypercubes representing functional categories of its input functions. A
hypothesis and test paradigm compares input data and existing hypercube categories, and
results in either network "resonance or dissonance," depending on the test outcome. A
hypothesis is formed by two functions which measure the degree of match between input
and each hypercube category. The hypothesis match functions are Degree of Inclusion,
and Degree of Perfect Match. An overall hypothesis is chosen based on the best
hypothesis, i.e., the hypothesis which has the greatest match. A test is then performed to
verify the hypothesis. The test consists of both a vigilance, and overall hypervolume
limit test. The vigilance test measures the top down match between the hypothesized
category and the input. The overall hypervolume test ensures that any category
adjustments keep the total category hypercube volume within bounds.

Category representation is extended beyond a unit hypercube as in [21] reflecting the
interpretation as a degree of typicality, rather than relative [18] to allow for more "noisy"
feature hypercubes. The network has 7 layers; input, transform, process, hypothesize,
test, functional, and category. The network is described in a hybrid neuronal-functional
approach.

The network was tested with standard classification test data for recogniton of speakers in
an open set, text-independent environment. The standard sets were Iris and Wisconsin
Diagnostic Breast Cancer (WDBC) [26]. The network produced 88% correct
classification for WDBC and 76% for Iris.

A speaker recognition system [12,13,14] using a fuzzy hypercube classifier was tested
using the Switchboard [22] and Greenflag [23] data bases. The fuzzy hypercube ANN,
characterizing one speaker per category, produced an average of 6.29 correct and 0.29
incorrect categories out of a possible 8 total, with no prior training. The overall average
correct classification produced by the network using a fixed set of signal features for 8,
12, and 16 speaker groups was 67%. See [15] for details.

Vll

1. INTRODUCTION

Classification is the process of labeling data as groups which are related by one or more
common concepts. There are numerous approaches and definitions of classification in
the literature based on statistical methods. See [8] for an introduction. Fuzzy methods in
classification are developed in [1], along with categorization of classifier designs
according to model, data, output, decision regions, algorithm, and architecture. In this
report, we are concerned with designs which are based on the general hypothesize and
test paradigm with data driven hypothesis formation [24]. Here the knowledge is
decomposed hierarchically into "levels of analysis" [24].

The use of an Artifical Neural Network as a classifier, particularly for unsupervised
learning, is based on the architectures of ART [2,3,4], fuzzy ART [6,17], and fuzzy min-
max [21]. These all employ the general hypothesis and test paradigm, but are more
neuronal "model-based" methods. In each the general processes of hypothesis generation
are roughly maintained as a neural structure, and a testing mechanism is described as a
somewhat complex feedforward/feedback functional control mechanism.

A brief introduction to the basic and fuzzy ART functions, architectures, standard
terminology, and equations will be presented next as background. Familiarity with basic
fuzzy sets, fuzzy set theory and clustering is assumed. See Chapter 2 in [1] for
introductory papers in fuzzy set theory and clustering, and Dubois and Prade [9] for
further details on general fuzzy set theory.

1.1 ART2

A typical ART2 [14] network is composed of two layers (or fields) of neurons which
form the Attentional Subsystem. The first field is the Feature Representation Field, or
Fi, which contains processing elements (PE) that form three intra-PE sublayers which are
responsible for processing one element in the input pattern. The main function of the
feature representation field is to enhance the current input pattern's salient features while
suppressing noise.

The second layer in the attentional subsystem is called the Category Representation
Field, or F2, which represents one category (or class) that has been learned by the
network. The connections from a particular F2 neuron store a category pattern. ART2
utilizes an unsupervised learning technique which attempts to discover the distributions
and centroids of the categories for the patterns it is presented. ART2 can utilize a
"winner-take-all" classification strategy, such as MAXNET [19]. Having selected the
winner, an Orienting Subsystem is activated to determine whether the proposed winning
neuron's Long Term Memory (LTM) traces sufficiently resemble the Short Term
Memory (STM) pattern to be considered a match. A matching threshold called the
Vigilance Parameter determines how similar the input pattern must be to the exemplar to

be considered a match. If the degree of match computed by the orienting subsystem
exceeds the vigilance parameter, a state of resonance is attained and the STM pattern at
Fi is merged onto the winning neuron's LTM traces. Otherwise, the orienting subsystem
sends a reset signal to the winning neuron, and inhibits it from competing again for the
current input pattern. This search process is repeated until either an F2 neuron passes the
vigilance test or all established F2 neurons have failed the test. In the latter case, a new
category is established in the next available ¥2 neuron.

Orienting
Subsystem

Figure 1. Basic ART2 Architecture

Learning is competitive with each F2 neuron attempting to include the current input
pattern in its category code. The actual learning process involves modification of the
bottom-up and top-down LTM traces that join the winning F2 neuron to the feature
representation field. Learning either refines the code of a previously established class,
based on any new information that is contained in the input pattern, or initiates code
learning in a previously uncommitted F2 neuron [2].

In either case, learning only occurs when the system is in a resonant state. This
property ensures that an input pattern does not obliterate information that has been
previously stored in an established class.

1.2 Fuzzy ART

The basic operation of "adaptive resonance" in the standard ART is simplified in the
fuzzy ART. The basic equations which govern the fuzzy ART are based on the equations
from the standard ART architecture, where the intersection operator is replaced by its

fuzzy counterpart, the minimum operator. An introduction of the mathematics governing
the fuzzy ART is given here, based on [4,5,6,7,25]

The fuzzy ART system consists of three layers: the input layer (FO), processing layer
(Fl), and output category (F2) layer. Associated to connections between layers Fl and
F2 are a set of weights directed from Fl to F2. A fundamental difference between the
Fuzzy ART and prior continuous versions is the simplification of the "resonance criteria"
by use of only bottom-up weights in the matching process. The matching process
consists of two vector matching operations:

• Degree which input A matches output category c
• Degree which category c matches input A

The norm of a vector A, which gives an indication of its "size," is defined as

Ml = IK I - (D
The following three sections describe the fuzzy mathematical functions, operations and
data structures associated within each of these layers.

1) Input Layer
Given an input vector A, A = {cij} or optionally, with the complement

A = {aJ,a
(j}, j = l,2,...,Nin (2)

The addition of the complement of the input vector has the advantage that A is now self-
normalized, using the definition of norm in Eq. 1:

Mi=h.fly)i=Zfly+Z(i-fl/>=i=^ e>
7=1 7=1 7=1

2) Output Layer
The output layer F2 consists of a set C of JVmax active categories,

C = {Cj,...,cWmK}

Each category vector c3 eC has an associated LTM weight set

Wj ={wu,w2J,...,w2Ni^j}

3) Processing Layer
A category Choice Function Tj measures the degree which input A is a match to a Cj

and its associated Wj :

UnWA \MIN(A,Wj)\
T

J=
} F-T = ^ T-ii (4)

a + \Vj\ « + |K I
where a > 0 is a choice parameter.

T is the best category choice, and is calculated as the union of all Tj.

T=\JTJ=M4X(TJ) (5)
j J

There are two cases which can occur once a category choice is attempted:

Case 1. Equation 5 produces a choice J. A test is performed on the preliminary choice J
to test if it meets a threshold criteria called the vigilance test, where the degree to which
the preliminary category matches the input A is compared against a threshold p

AnwA \MIN{A,W,)\
 l~L- A>p (6)

14 Nil

If the vigilance criteria of Eq. 6 is not met, the preliminary choice [J] is said to be "reset,"
and another category choice according to Eqs. 4 and 5 is made from the set of active
categories in C.

If the vigilance criteria is met, then the system is said to be in a state of resonance, and
the input A is incorporated into category J by the following:

wT=ß{AAwf) + (l-ß)wf (7)

Fast learning is said to occur when ß = 1.

Case 2. Equation 5 produces no choice. If no category choice can be made, a new
category CN+l is created in C with

<r. = <! = A. (8)

Initialization: N=0

A simplified fuzzy ART architecture is described by Kasuba [17]. In the remainder of this
report, we will describe a classifier based on ART2, fuzzy ART, simplified fuzzy ART,
and fuzzy hypercube ART. Section 2 will introduce and define the fuzzy hypercube
classifier. Section 3 will compare simplified fuzzy ART and fuzzy hypercube ANN using
standard classification sets. Section 4 will give an application of the fuzzy hypercube
classifier to Speaker Recognition, and Section 5 will briefly summarize the results.

2. FUZZY HYPERCUBE ARTIFICIAL NEURAL NETWORK

Modifications to ART and Fuzzy ART were done to:
1) Improve performance since they generally suffered from poor noise tolerance
2) Provide workable functional basis for hypothesis/test of neural systems

The Fuzzy Hypercube ANN (FHANN) is a conceptual-neural model based on the
following general features:

1) Hypothesize and Test paradigm,
2) Hypercube category (concept) representation
3) Category Overlap
4) Fuzzy Information representation and processing
5) Information Fusion (optional)
6) Category Match Test
7) Hypervolume category limit

An FHANN, which implements the above general features, will be described. First an
overview will be given of the network layer structure, followed by a detailed description
of each layer. Also, global category merge and ANN initialization are described.

2.1 Fuzzy Hypercube ANN Structure

The FHANN has seven layers of processing. Figure 2 shows the functional structure,
interconnection, and data flows of the ANN structure. Notice the network bi-
directionality in its processing and information flows. Specific category information is
fed back to the Fusion and Transform layers for state-dependent information adjustment,
and to the Functional layer to performing category adjustment and learning.

The function of each of the seven layers in the FHANN is:

Input: Input fuzzification, scaling, optional functional expansion
Transform: Evaluation of category choice functions over active categories
Fusion: Fusion to final ratings of category choice evaluation [Optional Config]
Hypothesize: Choice of single hypothesis category
Test: Pass/fail match test of hypothesis category
Functional: Category creation, hypervolume adjustment, or category learning
Category: Representation of clusters as fuzzy hypercube

The FHANN has several distinct differences from the basic, fuzzy, and simplified fuzzy
ART. It retains the basic data structures using A and x vectors. The concept of bottom
up and top down match and the learning rule are different.
Each of the layers are described in the following sections. A detailed view of the
network is shown in Figure 3, where each of the blocks from Figure 2 is expanded to
show more details.

Category

Create

Functional

Adjust Learn

no winner

Figure 2. FHANN Layer
Structure

Test

Hypothesize

Fusion

Transform

Input

no resonate

no winner

2.1.1 Input Layer

The Input layer has three inputs and 3 * Nin outputs. The inputs are vector A, scaling
values for A, and enable/disable. The vector A and associated scaling generate fuzzy set
representations of the input as "Feature Vector". The enable/disable inputs control the
Input layer and overall network resonance/dissonance.

2.1.1.1 Fuzzy Set Generation
The input vector and its optional complement are described by Eqs. 2 and 3.

A scaling function is defined based on the range of inputs between an expected minimum
and maximum for each element of the input set A. The scaling function maps input
values to the closed interval [0,1].

A discrete fuzzy set "Feature Vector" (FV) results from the set of mapped input values of
A. This fuzzy set characterization is represented by a crisp set of individual membership
functions s(a), one for each input feature value a. Note that this standard representation
of a fuzzy set uses the plus sign to indicate the union of the elements.

py =
v(a') + ^"z) | + ■n"K •v(aA';„)

N,„

Figure 3. FHANN Functional Diagram

The function s translates input features into membership values.

s(aj)
°> aj ^ FM..J

Zj> FMinJ < aj - Puaxj

L aj > FUaJ

overall j =\,2,-,Nin (9)

where z,=- °J ^
I PMaxJ r'MinJ I

Individual values of FMilfFMax are initialized as either
• Constants
• Learned Variables

A simple weighted learning procedure can be implemented to dynamically adjust the

values of rMini FMax . Although, in this report, only constant values are used.

2.1.1.2 Layer/Network Resonance/Dissonance Control
The enable/disable input controls iteration/search cycling in the network. The network
either continues to cycle with current input A when a suitable category is not found by the
Hypothesize/Test layers, or stops cycling and begins processing of the current input,
while enabling the acceptance of the next input.

2.1.2 Category Layer

The Category layer produces the output of the network and consists of a set of neurons
with associated states and LTM weight values which descibe them. The LTM weights
are described using a min-max feature hypercube representation of the associated J-
categories defined by Simpson [21]. Strictly speaking, the categories are not hypercubes
but "hyperboxes," since they do not have equal dimensions.
The category layer C is a set defined by:

C=[B
J
,N

J
,T

J
,S

J
), J = l,2,..., N„

with BJ
 = {

V
J>
W

J}> J = l2,...,Nin, Vj.Wjem
(10)

where JVmax the total number of J-categories, JV/n is the j-dimensionality of the hypercube
representation according to Eq. 2.

The category layer consists of BJ as the hypercube representation of category J. BJ

contains a jth dimensional description of Vj the minimum point, and W} the maximum
point. Additionally, category J consists of:

• NJ is a count of category adjustments

• TJ is an overall confidence

• SJ is the state of category J

2.1.3 Transform Layer

FV values from the Input layer are passed to the Transform layer, where they are
processed by a match function and generate a degree of match between the input A and
each member of the output category set C. A membership of the input in each of the
output category classes is produced.

A wide range of choices is available for the matching functions such as those in ART2 or
fuzzy ART (Eq. 4). Several authors examined various fuzzy match functions. Eq. 4 has
been expanded by Carpenter and Gjaja [7] to Choice-by-difference, providing a more
conservative learning.

Tj = (\WJ\-\AAWJ\) + S(\IVWJ\-\WJ\)

where e is analogous to a of Eq. 4.

Simpson [21] developed a membership function which measures the average amount of
max point and min point violations. He defines a function b which approaches 1 as the
point approaches a hypercube,

bh(Ah,Vj,WJ)=-±-j?[\-f(ahi-wji,y)-f(vJi-ahi,y)]

where f() is the ramp function,
r 1 if xy>\

f(*,r) = xy if 0 < xy < 1

0 if xy<0

The variable y regulates the speed of membership decrease when an input is separated
from a hyperbox core [21].

The idea of a smooth membership function which approaches one, as a point is within a
target hypercube and steadily decreasing as it leaves the hypercube, has conceptual
support. However, the function bb above does not provide a clear indication of goodness
once inside the hypercube.

2.1.3.1 Matching Functions.
A general and exact hypercube match is formulated as the linear combination of two
functions [11]. The functions measure fuzzy hypercube "Degree of Inclusion" (DOI) and

"Degree of Perfect Match" (DPM). They are combined to give a measure of the level at
which the scaled input matches to each feature category hypercube.

+■ x

2.1.3.2 Degree of Inclusion

u(x,y)
DOI measures the level at which each

* input Aj matches to the external dimensions
i. o | of» or is similar to, the j-th dimension of a J-

category hypercube.

This method is similiar in function to
Simpson's [21]. A trapezoidal function is
used as a model for a match which gives
full membership when an element of Aj is
included in a category, and less than full
membership outside, depending on the
distance to the hypercube. Figure 4 shows

Figure 4. Trapezoidal Degree of Inclusion the trapezoidal membership function.

The set H, consisting of upper and lower fuzzification values is defined for each
hypercube B J, as

HJ ={BJ,LJ,MJ), J = l,2,...,NMax

LJ={Lj), MJ = {Mj}, j = l,2,...,Nin (11)

where the sets LJ, MJ represent the fuzzification sets for the upper and lower limits.

The overall membership for DOI, ju D01 (A) is defined for each j-dimension of the

subsets of HJ for hypercube J (Eqs. 10,11) as a trapezoidal function // ^OI (A).

IF WjZajZVj tf° '(A) = 1

IF Mj > aj > W, = \-{aj-Wj)y

IF VJ >aJ>LJ = l-(V.-aj)r

IF Lj > aj OR Mj < aj = 0

(12)"

As a practical matter we set \lj - v J = \wj -mj\ = j to evenly fuzzify the hypercube. The

value — is chosen as a constant range of "fuzzy" border around V and W for each value
Y

of A.

The oveall membership function for the DOI, ju D01 (Ä), is defined as the following:

10

^'(^-L^f» (13)
•** in j

Note that 0<£ //?0/ <Nb

2.1.3.3 Degree of Perfect Match (DPM)
The DPM measures how close an input is to the mean of each J-category. The measure
of the distance from the mean of each dimension of Hj is defined as DPM. DPM is a
resemblance relation between the input A and an individual J-category. First, the mean

MJ of a category J is defined.

\v -W /
MJ ={mJ} = \ J J/2 , j = \,2,...,Nin (14a)

The dissimilarity is defined as the difference between the value A and the mean of the

category J, MJ,

Dissimilarity =\A- MJ |

and for each j -dimension of A and MJ,

Dissimilarity j = a; -m\

The similarity is taken as the fuzzy complement of the dissimilarity,

Similarity = Dissimilarity1^

and, for each j-dimension element, we have

Sim l: = 1 - \üJ - m}: | (14b)

Using the mean and similarity from Eqs. 14a and 14b, the individual j-dimension

membership functions for DPM, /i DjFM (a; j are defined as follows

Hj K J} \l-\aj-mj\ if Wj *Vj

The overall membership function //DPM (A) for a single J-category is the mean of the

sum of the individual values,

Again, note that 0 < ^ pf" {fl}) < Nin and jUjDFM(A) e [0,1].

11

2.1.4 Fusion Layer

The Fusion layer integrates the best knowledge in the network concerning the matching
between the current input A and each of the current categories. The knowledge used in
the matching process is the DOI and DPM from the Transform layer, as well as certain
feedback category information that comprise the input to the Fusion layer. A fusion
function R ■' is defined as the linear combination of the DPM and DOI that are

dynamically weighted. The dynamic weighting is done to compensate for low DOI at the
start of a hypercube matching cycle, and is based on the number of inputs representing a
resultant category.

RJ(Ä) = kJ
xM

Dr(A) + kJ
2Mf'(Ä) (16a)

where

k2
J = min(K * NC(J),l), k(+ kJ

2 = 1 (16b)

and RJ < 1

0<K< 1, K constant

The functions kf ,k2 are dynamic weight functions which give the relative importance of

DPM and DOI to the value RJ. Note that DPM and DOI are weighted complementary,

to allow for RJ < Nin.

The node constant NC is a dynamic weight function dependent on NJ m Cj which is the

number j of input vectors which are assimilated through learning into a J-category
hypercube.

NC(J) =

0.65, NJ =\

0.85, NJ =2

0.95, 7Vy=3 (17)

1.00, NJ >3

2.1.5 Hypothesis Layer

Inputs from the Fusion layer form a hypothesis space from which a single winnning
category hypothesis is either chosen or no winner is chosen meaning no current category
fits the current input and a new category is then created. Hypotheses are formed and a
Winner/No Winner is chosen by first finding the maximum over all the active J-category

fusion values, RJ. An active category is one which has not yet been processed using the

current input as a hypothesis; if it has already been processed it is marked inactive.

Winner: Cw = max{RJ} if RJ is active and RJ >0, J=l,...,N

12

No Winner: if RJ is inactive,or RJ < 0, overall J

The resultant hypothesis "Winner" is passed with the winning category node to the Test
layer, while a "No Winner" hypothesis is passed back to the Input layer to halt resonation
of the network, as well as to notify the Functional layer to create a new category node for
the current input A.

2.1.6 Test Layer

The Test layer performs a match test on the curent active winning category Cw as an
input hypothesis. The value of R J

 associated with cw measures the degree of match

between the category hypercube B J and the input vector A. A modified form of the
vigilance test (Eq. 6) is performed as shown in the following equations to measure if the
current hypothesis passes the vigilance threshold.

RJ > padj (18)

where
padi = pNC(J) (19)

and NC(J) is described by Eq. 17.

Additionally, any current category which fails the vigilance test is inhibited from
competing with the current input by making it inactive.

2.1.7 Functional Layer

The Functional layer performs a series of services on the Category layer including
Hypervolume Measure, Hypervolume Test, Hypervolume Adjust, Hypercube Learning,
and Hypercube Creation.

2.1.7.1 Hypervolume Measure
There are two methods described to calculate hypervolume: by a product and by a sum.
The product hypervolume, Phv, which corresponds to the "geometric" interpretation of

volume, is found by the product of the "length" in each dimension of Bj.

Phv=\f[(Wt -V,)\ (20)
;=1

where 0<Phv<l

The product measure, however, does not allow for much expansion in the measure of a
hypercube with variable length concepts or inclusion of noise, etc. Another measure of
the hypervolume which increases the effect of each dimension is the unweighted sum of
each of the hypercube dimensions, Shv,

K
Shv = Y,\Wi-Vt\ (21)

where 0<Shv<Nh,

13

2.1.7.2 Hypervolume Test
Hypervolume limit testing and adjustment are necessary for the stability of the network.
In FHANN, for each J-category, the hypervolume measure is constrained to be less than a

maximum limit, 0max. The hypervolume 0 of a hypercube is bounded to keep it from
expanding to infinite volume.

O<0^©max fareachJ J=l,...,Nma (22)
where the operation which determines 0 is selected from the set of hypervolume
measure operations defined by Eq. 19 or Eq. 20.

0 ={Phv,Shv}

2.1.7.3 Hypervolume Adjust
If the limit 0max is exceeded, the category hypervolume is adjusted. The excessive
volume A0 is found from the current hypervolume, 0, by the following:

|Y©-0)/N. 0>0 ^0_JV v max ,/'■" in ^ ^ '"max OW

\ 0 Otherwise

where Nin is the current input dimensionality as in Eq. 11. The hypervolume of category
J is adjusted whenever A© > 0 by

W'Jew = max{(Wfd - A0 / 2),0}

Vn™ = mm{(Vfd + A0 / 2),1} (24)

This operation brings the hypervolume measure of category J within the value of 0max

as required by Eq. 22.

2.1.7.4 Hypercube Learning
The inclusion of input A into the winning category hypercube Bj is done through a
learning algorithm which adjusts the category J hypercube. In general, each feature of A,

üj, selectively adjusts its respective limits in W; and V; through the following hypercube

learning algorithm. A learning adjustment factor r is used to set the algorithm's rate of
learning.

Hypercube Learning Algorithm. Given an input vector A, a hypercube Bj5 and a learning
adjustment factor r, learning is performed for each dimension of A.

1. Determine if input is inside or outside of interval Bj
2. DO: Respective Case 1 or Case 2 and subcases below.

Case 1: Input is outside of interval Bj
Case 1.1 Input above Wj: Increment W upwards

14

IF at>W^THEN Wf" =Wf+r(a, -Wf), V"ew =Vold

Case 1.2 Input below V,: Decrement V downwards.

IF a, < Vf THEN VT = V°Jd + r(a, - V°Jd), Wnew = WM

Case 2: Input is inside of interval Bj
Case 2.1 Input is closer to V; move W closer in to V.

IF{au>Vf AND a, <Wf AND Wf-a,^a,-Vf)

THEN W'jr =Wj°!d -r(Wf -a„), Vf" =V?

Case 2.2 Input is closer to W; move V closer to W.

IF (a, > Vjf AND a, < Wf AND a, - Vf > Wf - a,)

THEN Vr=Vf +r(a, -Vf), W™w =Wf

2.1.7.5 Hypercube Creation.
The creation of a hypercube requires that the overall hypervolume limit is adjusted
through the hypercube dimension, hd^, which is defined as the maximum hypercube
dimension, assuming equal size in each dimension:

hd =^ (25) max -J.T
in

Upon Creation:
1. Initial settings are equal.

wr=vr=a,
2. Number of active J-categories is incremented by one.

^max=^max + l

2.2 Auxiliary Network Functions

The FHANN has optional and required auxiliary functions. The required functions
include FHANN Initialization of system, and FHANN parameter initializations. Optional
function is the Global Category merge which was tested, but results are not reported here.

2.2.1 Category Merge

A global merge is defined as a combination of hypercube cluster classes produced by the
FHANN which are very "close" to one another. This operation is performed outside of
the neural network processing and does not affect any of the internal operations of the
network. It does utilize detail parameters generated by the network.

15

This process occurs over time between FHANN cycles and can be considered a long term
averaging process. There are two measures which are used to indicate whether a global
merge is to take place:

a) Volume difference between hypercube categories and
b) Magnitude of rating R from Eq.16 between two categories.

The volume parameter is defined as follows:
Njn x A < volume (26)

The value Nin is the number of input nodes and A the hypervolume per node.

A category merge function is defined. First, merge parameters are obtained over all
possible different pairs of the current categories defined. Next, the merge criteria are
applied and partition current categories into a final set which is compacted. [Note that
during testing, the compacting occurred very rarely]. The criteria are expressed in terms
of acceptance/rejection regions in the volume difference/rating mapping.

0.0 <Avol(cl,c2)<U0 and R(cl,c2)>l.OO OR

U<Avol(cl,c2)<\.50and R(cl,c2) > 1.00 OR (27)

1.5 < Avo/(cl.c2) < \.15and R(cl,c2) > 1.40
These were experimentally derived and were only used to evaluate the concept of global
clustering criteria within the context of the hypercube structure.

2.2.2 FHANN Initialization

The initialization is performed on the FHANN as follows:
Step 1. Enable all categories, set count, and confidence is "none".

NJ =0, TJ =none, SJ= enabled

Step 2. Set available category count to zero.

Nami,=0

2.2.3 FHANN Parameters

The FHANN contains several variables and parameters which are under the control of the
designer of the system. The parameters are to be set before NN execution, and are as
follows, with references to defining equations:

PI: Size of input layer, Nin (Eq. 2)

P2: Maximum number of output categories, ATmax(Eq. 10)

P3: Complement of input A in input layer (Eqs. 2, 3)

P4: Maximum, minimum input scaling values in A, F^F^ (Eq. 9)

16

P5: Hypercube fuzzification, I, for fuzzy border around each a} (Eq. 12)
Y

P6: Fusion function weight, K, the fraction of DPM (Eq. 16b)

P7: Base value of vigilance, p (Eq. 19).

P8: Hypervolume maximum, hvmm (Eq. 22)

P9: Learning adjustment factor, r (in Hypercube Learning Algorithm)

P10: Hypercube Measure Type (Eq. 19 or Eq. 20)

One optional parameter, if known, is:

01: Known Number of input classes, Ndms

3. NETWORK COMPARATIVE PERFORMANCE ANALYSIS

The performances of fuzzy ART and the FHANN are compared using two standard
classification data sets: Iris Flower and Wisconsin Diagnostic Breast Cancer. A
simulation of the FHANN's was made using MATLAB. This section provides details on
the structures for the simulator and results of the comparative testing performed.

3.1 Test Measurement Definitions

Test data items which are measured to quantify the performance of the FHANN's are
defined in this section. Note that for all data tested, the correct responses are known but
are used only in the calculation of the ANN performance.

The definitions for CC, TC, and IC are test measurements made on the FHANN's of the
number of categories created by the networks.

CC="Correct Category": Count of categories containing data designated as
correctly classified.
TC="All Created Categories": Count of all categories created
IC=TC-CC="Incorrect Categories": Count of categories containing data
designated as incorrectly classified

The definitions for the following are test measurements made on the FHANN's of the
number of input data elements placed in the various classes defined as CC, TC, or IC.
The prefix function "D" indicates the measure of data in a specific category.

D="Data": Function indicating individual data sets in a specific class/category.

17

D(CC)=Data in Correct Category
D(TC)=Data in All Created Categories
D(IC)=Data in Incorrect Categories

Correct Classifications Vs Incorrect Classifications in "Correct Categories"
One measure of the performance of the FHANN being used is the fraction of how many
of the data in the created categories are correct or incorrect, with respect to the sum of the
correct and incorrect data input to the system. These are defined by Eqs. 28 and 29.

P«=2>(CC) + Z)(/C)} (28)

^{D(CC) + D(IQ}
P* = Vrrwv^ n,r^ (29)

Note that /»£ nP£=0

Correct Classifications Vs Incorrect Classifications in "All Created Categories"
A measure of the performance of the FHANN in all categories is a measure of the
fraction of how many of the data that are in correct or incorrect categories, with respect to
all the data input to the system. These are defined by Eqs. 30 and 31.

2>(CC)

P*c = ZD(TQ (30)

P- = v7^ (3D

Note: The following inequality may exist due to the fact that several potential categories
may have been eliminated prior to classification:

D(TC)>D(CQ + D(IC)

Total Count of Incorrect Categories
This measure is the absolute number of incorrect categories created. It gives an
indication of the degree of useless categories which the network creates for a given set of
conditions. It is given by Eq. 32.

P,c=I,IC (32)

Correct Vs. Incorrect Categories
A measure of the performance of the FHANN, with respect to the number of correct
categories it creates and the number of categories created, is measured as a fraction of the

number of correct categories, if the value of Nclass is known. It is given by Eq. 33.

Ice
PC

N
C = (33)

N iv class

Likewise, for number of incorrect categories, Eq. 34.

/£=-^- (34)
N ^ class

3.2 Function Descriptions

The analysis was performed using a system running under MATLAB with the following
functions:

(1) Anode: Creates an output node for ANN. An output node contains: category number
(Cat), count of adjustments (Nj) and B. Nj is initialized to one, the max points W to zeros
and min points V to ones. Category number is equal to the number of categories.

(2) Volume: Calculates the volume of a hypercube. The volume is defined as the sum of
all sides of a hypercube (Eq. 21).

(3) Min-max: Finds minimum and maximum values of each input feature from an input
data file (Eq. 9)

(4) Scale: Scales input vector to be within [0,1] (Eq. 9).

(5)NC: Generates node constants for different Nj's (Eq. 17).

(6) DOI: Calculates degree of inclusion (Eq. 13).

(7) DPM: Calculates degree of perfect match (Eq. 15).

(8) Adjust: Adjusts vector B so that the overall hypercube volume is within limit
(HV_max). It requires two inputs: Vector B, and the difference between the max and the
actual volume Delta (Eq. 23).

(9) Learn: Updates and returns the values of B (which contain the min (V) and max (W)
of the hypercube) using input vector A.

(10) Trans: Transforms input data into a membership function R using DOI and DPM
(Eq. 16a).

(11) Test: Performs a match test (Eq. 18) on the input vector and category input
hypothesis.

(12) Stat: Calculates the statistics of the output and does some output routines.

19

3.3 Main Program Description

Interactive input values are requested for Vigilance, Gamma, Learning Adjustment Factor
r, K (in Eq. 16b) and maximum hypercube volume 0max.

The input data file which contains the feature vectors is then scanned using Function
Min_Max to obtain FmafFmin the maximum and minimum values. These are used to scale
the input data set using the Function scale.

The first data set is read and classified as category one. An initial output node is created
for this data set using Function Anode. Once a node is created, the number of nodes
(Num.) is incremented by one. A scan loop reads input feature sets from the input file
until an end of file is detected.

Inside the scan loop, data sets are read and scaled. The scaled input data goes through the
transform layer using Function Trans which takes the input vector and generates a
membership vector R. Values of vector R are then sorted in ascending order. The
category node which has largest R value is the current winner.

No Match

Create
New

Category

The input data set is set at the
winning category node. A match
function is performed against the
input data and the winning
category's maximum and minimum
points using the Function test.

If it matches, then a hypercube
volume test is performed to see if it
is within the specified maximum
hypercube volume. If not, the min
and max points are adjusted. The
winning category node learns the
input data through the Function
learn. If it does not match, that
winning category node is disabled
and the category node with second
largest R value is activated.

The process continues until the last
category node is encountered with
no match. At this point, a new
category node is created for that
input data set.

Figure 5.
FHANN Functional Block Diagram

20

Figure 5 shows the Main program's Functional block diagram. For a more detailed
description, see the Main program's flow chart in Figure 6.

|Open Input/Output Files
FIGURE 6.

FHANN Main Program
Flowchart

Read: Vigilance,
Gamma,r,k,Hv max

User
Input

Min_Max;
Read input
a;Scale(a);

Init

Create 1st Node
Num = Num+1;

Read Input a
Scale(a);

Read data

£
Node = l;

/* Transform Membership Function */
R = Trans (B (Node) ,a,Nj (Node) ,Gamma,k)

[Match,B,Nj,Out_Cat]=Test_hyp(a,R,B,Nj,Hv
max,Vigilance,r)

Hypothesize
/test

/* Create new category */
B(N Nj(Num)=anode(a,num)

Create
category

Y: Exit

21

3.4 Testing Methodology

The FHANN was tested using a parametric testing method. A set of baseline values was
chosen and the program was run while varying a single parameter in the baseline and
keeping the others constant. The purpose was to see the effects of one variable on the
output of the network. The data files that were used as inputs were: iris.dat (a 3-feature,
150-cases of the Iris flower classification set) and WDBC.dat (a 2-feature, 569-cases of
the Wisconsin Diagnostic Breast Cancer).

For each run, the following measures of performance were generated and graphed:
- Percentage of correct classification in all classes (Eq. 28)
- Percentage of correct classification in correct classes (Eq. 30)
- Number of incorrect classes formed.

From results of the parametric test, the best value for each parameter was chosen to
maximize the output of the network.

For Iris.dat, the following optimal output was obtained:
- Percentage of correct classification in all classes: 76%
- Percentage of correct classification in correct classes: 79%
- Number of incorrect classes formed: 1

when Gamma = 5; Vigilance = 0.7; r = 0.18; k = 0.1; Hv_max = 1.5

For WDBC.dat,
- Percentage of correct classification in all classes: 88%
- Percentage of correct classification in correct classes: 90%
- Number of incorrect classes formed: 1

when Gamma = 5; Vigilance = 0.6; r = 0.1; k = 0.1; Hv_max > 0.5

Figures 7 and 8 show a sample run of the output from the network. A confusion matrix is
generated for each case where columns are the actual input categories and rows are the
output categories formed. Fig. 9 plots the percent of correct, number of correct
classifications, and number of correct categories versus vigilance for both iris.dat and
WDBC.dat.

3.5 Comparison Between SFAM and FHANN

Simplified Fuzzy ART Map (SFAM) [17] has higher percentage of correct classifications
than FHANN in the Iris case and about the same in WDBC case. However, the numbers
of incorrect classes, NJncor, are much higher for SFAM over FHANN in both cases.
This occurs because SFAM is more scattered than FHANN as it is more sensitive to
changes in the input features. FHANN appears more stable, displaying greater
insensitivity to noise in the input features

22

INPUT DATA FILE: iris.dat
Vigilance = 0.700000
Gamma =5.000000; k = 0.100000
Learning adjustment factor r = 0.180000
Maximum hypercube volume = 1.500000

Confusion matrix:

Out 1 3 Total Percent

1 50 0 0 50 0.33
2 0 29 43 72 0.48
3 0 21 2 23 0.15
4 0 0 5 5 0.03

Total: 50 50 50 150
Percent: 1.00 0.42 0.86 1.00

Number of correct classifications: 114
Number of incorrect classifications: 36
Percentage of correct in all classes: 76/100
Percentage of correct in correct classes: 79/100
Percentage of correct classes: 100/100
Number of incorrect classes: 1

Figure 7. FHANN's Optimal Output for Iris.dat

INPUT DATA FILE: WDBC.dat
Vigilance = 0.600000
Gamma = 5.000000 ; k = 0.100000
Learning adjustment factor r = 0.100000

Maximum hypercube volume = 1.000000

Confusion matrix:

Out 1 2 Total Percent

1 157 16 173 0.30
2 39 341 380 0.67
3 16 0 16 0.03

Total: 212 357 569
Percent: 0.74 0.96 1.00

Number of correct classifications: 498
Number of incorrect classifications: 71
Percentage of correct in all classes: 88/100
Percentage of correct in correct classes: 90/100
Percentage of correct classes: 100/100
Number of incorrect classes: 1

Figure 8. FHANN's Optimal Output for WDBC.dat

23

Number of Correct Vs. Vigilance - Iris Percent Correct Vs. Vigilance - Iris

100

90 •

i ' ■" 1— i —I

— SFAM;

i

H_ann .

1

80
/
/

\
\
\

-

70 1 \^^^\ .

60

__,-»

1 V\

\\
50

40

\\

30 ' ' 1 i ' » , '
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Vigilance

100

--**""""" s

90 /'
/

1
80

I /

70 l
/

60

50

-SFAM; _ H_ann j
40

/
30 ' i i i i i i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Vigilance

Of Incorrect Categories Vs. Vig. - Iris Percent of Correct Vs. Vigilance - Wdbc

35

3D

25

20

15

10-

■-SRAM H am

Q1 Q2 Q3 Q4 0.5 Q6 Q7 0.8 09 Q1 Q2 0.3 Q4 Q5 Q6 Q7 Q8 Q9
Vigilance Vigilance

Figure 9. FHANN and SFAM comparison

24

Of Incorrect Categories Vs. Vig. - WDBC Percent of Correct Vs. Vigilance -WDBC

0.1 02 0.3 0.4 05 0.6 07 08 09
Mgilanoe

Q1 Q2 Q3 Q4 0.5 0.6 Q7 Q8 Q9
Mgilance

Figure 9. FHANN and SFAM comparison (Contd)

4 SPEAKER RECOGNITION TEST

This section describes specific testing of the FHANN for recognition of speakers.

4.1 Introduction

Speaker recognition from speakers' voices requires a clustering/classification process
which can group signal feature representations of the voices into reliable speaker groups.
The clustering/classification should be able to form any number of classes dynamically,
and tolerate the noisy and overlapping domain of speakers' feature vectors. ART
architectures did not perform well during prior speaker recognition testing [13,14,16];
hence, the fuzzy hypercube classifier was employed in this test in an attempt to overcome
this and other problems.

There were two speaker data sets used for the formal testing of the system, the
Switchboard [22] and the Greenfiag [23]. Switchboard data consists of 26 speakers and
Greenflag 41 speakers in a tactical environment. Both data sets were interfaced using the
NIST/SPHERE V2.2 software. Speaker test data were grouped into non-overlapping sets
of 8, 12, and 16 speakers.

25

The Feature Processor is described in detail in [15]. Features were analyzed for two
characteristics, separability, and maximum / minimum values. For an introductory
background in this area, see Pellisier [20]. This report deals only with the classification
performance of sets of input features provided by the Feature Processor.

There were a number of fixed and varied parameters corresponding to specific
subsystems [15].

FHANN-Variable Parameters
Vigilance
Maximum Hypervolume

Overall System Variable Data and Parameters
Test Data Sets
Number of Speakers
Number of correct and incorrect classifications per Test Set

4.2 Speaker Testing

The following are defined parameters which were measured during the speaker testing.

1. Average, Minimum, and Maximum of Total Number of Actual Speakers Correctly
Identified. Using P£c from Eq. 28, the average is defined as:

_ Zi&
/>C ^ tests s^ A\

CC - —Tr (34)
N tests

where D{CC) > 1 in Eq. 28, and N,esls are the total number of speaker recognition tests
performed. The Minimum and Maximum are defined as:

Min(P£c), Max(P£c)over all Nlesls (35)

Figures 10 and 11 both display the Average, Minimum, and Maximum of P£c as a
function of the vigilance parameter and the maximum hypervolume [within a small range
of values.]

26

Figure 10. Percent of Correct Classification vs.
Vigilance Values

Percent Correct
Classification
95 T

0.48

I Minimum

I Maximum

-Mean

0.55 Vigilance
Value

Percent Correct
Classification

95 T

85 ■ ■
75--
65--
55--
45 4-
35

Figure 11. Percent of Correct Classification vs.
Hypervolume Values

Hypervolume
Value

0.25 0.28 0.3

I Minimum

] Maximum

■Mean

2. Average, Minimum, and Maximum of Total Number of Actual Speakers Incorrectly

Identified. Using P,cc from Eq. 29, the average is defined as:

Ii
ric N,.

(36)

where D(IC) > 2 in Eq. 36. The Minimum and Maximum are defined as:

Min(Pfc), Max{Pfc)over allNu (37)
3. Average, Minimum, and Maximum of Spurious Categories1 Generated. Test values

are generated using P^ Eq. 33 with the condition D(IC) < 2:

P" = rIC N„
(38)

1 Spurious Categories are speaker categories with a maximum of 1 or 2 entries over all
time. This is extended to time-dependent spurious categories where the entry count
decreases fractionally and is proportional to age.

27

where D(IC) < 2 in Eq. 38 and 39. The Minimum and Maximum are defined as:

Min{PjNc), Max(P£)over allNtt (39)

Figures 12 and 13 display spurious speaker category creation in the network as a function
of vigilance parameter and maximum hypervolume.

Figure 12. Number of Spurious Categories vs.
Vigilance Threshold

I Minimum

] Maximum
-Mean

H Vigilance Values
0.5 0.52 0.55

Number of
Spurious

Categories

15 j
13--
11 ■-
9--
7--
5-.
3--
1 ■-

Figure 13. Number of Spurious Categories vs.
Maximum Hypervolume

+■

Maximum
Hypervolume

I Minimum

I Maximum

-Mean

0.25 0.28 0.3

4. Average, Minimum, and Maximum of the Number of Correct Speaker Categories is
defined as:

 PN

PN _ rcc
1 rr — lCC N.,

(40)

Min(Pc
N

c), Max(Pc
N

c)over allNu

Figures 14 and 15 show the development of correct speaker categories for the 8 speaker
test.

Number of Correct
Speakers out of 8

Maximum

Figure 14. Number of Correct Categories vs.
Vigilance Threshold

ffiffifl
0.5 0.52 0.55

Vigilance
H 1 1 1 Value

Number of Correct
Categories out of 8

Maximum

Figure 15. Number of Correct Categories vs.
Maximum Hypervolume

I Minimum

] Maximum

-Mean

Maximum
"• Hypervolume

0.25

Summarized test results for the FHANN performance are shown in Tables 1 and 3 for the
8 speaker tests, and Table 2 for the 12 speaker tests.

TABLE 1. FHANN, 8-Speaker Test

Test Data Set for 8

Speakers

Average Number of Average Number of Average Number of
Correct Categories False Categories False Categories
Generated (8 max) Generated (8 max) Deleted per Data

Set
Switchboard May 95
Greenflag

6.29 0.29 1.86
6.57 0.23 5.77

TABLE 2. FHANN, 12-Speaker Test

Test Data Set for

12 Speakers

Total Number of Total voiced Speaking Overall Correct
Speakers in Test Time (mins) Classification (%)

Switchboard May 95
Greenflag

12 16.71 67.25
23 4.77 68.75

29

TABLE 3. FHANN, Summary of Test Results
Test Data Set for 8
Speakers

Switchboard May 95
Greenflag

Total Number of
Speakers in Test

26
41

Total Voiced
Speaking Time
(hrs)
2.69
2.96

Overall Correct
Classification (%)

69.7
70.3

Percent Correct
Classification

95

85

75

65

55 |

45

35

I i M
■+-

♦ Minimum

■ Mean

• Maximum

12 3 4 5 6 7 8

Figure 16. Percent correct vs. Greenflag Test Groups

H Test Groups

Percent Correct
Classifiction

95 T

85

75 - -

65--

55 ■■

45

35

I * t

:!

I
1 lil".' 1

H 1 1 1 1 1 1 1 1 1 1 h—

•

i MH 1

♦Minimum

■ Mean

A Maximum

Test Groups
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 17. Percent correct vs. Switchboard 95 Test Groups

A breakout of the Switchboard and the Greenflag individual test groups is shown in
Figures 16 and 17. Here the results are given for each group individually, with associated
absolute minimum, maximum and mean. Values are derived using Eq. 34 and Eq. 35.

The overall system test results are shown in Table 4. This includes all speaker groups.

30

TABLE 4. Overall System Test Results

Test Data Set for
all Speaker

Groups

Total
Number of
Speakers

Total Voiced
Speaking Time
(hrs)

Overall
Correct
Classification

Standard
Deviation

(avg)

Maximum-
Minimum
(avg)

Switchboard [14]
Greenflag [15]

26
41

3.0
3.0

66.9
66.6

5.0
6.6

14.5
13.4

4.3 Test Results Discussion

The speaker tests performed in the previous section will be described. They will be
grouped into ANN Tests and Overall System Test. The Overall system test included the
testing of the Feature Processor with the FHANN.

4.3.1 FHANN Specific Tests

FHANN parameters modified during testing were maximum hypervolume and the
vigilance parameter. In Figures 10 and 11, the effects of the hypervolume (HV) and
vigilance on the system performance are demonstrated for a very limited set of values.
The bar charts indicate that the HV mean value does not change much, but the spread
between the maximum and minimum increases with increasing hypervolume. Thus, one
would like to keep the HV as small as possible, while maintaining an acceptable
classification performance level.

Spurious categories are displayed in Figures 12 and 13. Here an increase in vigilance
produced an increasing number of spurious categories, as well, and wider swings on the
maximum and minimum values. This makes sense since increasing the vigilance
produces a more "specific" network, and hence more extra category nodes would seem to
be created under these conditions. The effects of hypervolume, in contrast, seemed to
have little effect on the spurious category creation.

The bar chart in Figure 14 shows a slight decrease in the number of correct speaker
categories with an increase in vigilance, but a narrowing of the max/min values. For the
hypervolume, in Figure 15, there is a slight decrease also, but not as clear as that for
vigilance.

Figures 10 to 13 relate vigilance and hypervolume to the number of categories generated
in the category layer in the network, both correct and spurious. In the case of vigilance,
there is a slight downward trend to performance for a correct number of categories, and a
strong positive increase in the number of spurious categories generated as it increases.
In the case of hypervolume maximum, increasing values have little effect on the number
of correct categories and spurious categories.

31

Note that the tests should not be used to draw generalizations over the entire data space
due to the fact that data sets are narrow in range.

4.3.2 Overall System Tests

Overall testing results are shown in Figures 16 and 17 and Tables 2 to 4. In Figures 16
and 17, system performance is plotted for each speaker group, and is shown for its mean,
minimum, and maximum. The results are synopsized in Tables 2 and 3, giving the
standard deviation averaged over all groups for each group, as well as the maximum to
minimum value spread averaged over all the groups.

From these data, it can be seen that Greenflag had a smaller minimum to maximum
spread, and, with the exception of group number 7, all appear well behaved. In the
switchboard case, the spread is much more in all groups with group number 13 the
greatest. However, the switchboard data was still more well behaved and better clustered
as is shown by its smaller standard deviation in Table 4.

The performance of the test groups is nearly identical at 67% for an 8 speaker group
maximum.

5. CONCLUSION

A seven layer neural network architecture is described which performs a hypothesize and
matching test between an input vector and a fuzzy hypercube category representation of
the input vectors.

The network has a variable hypervolume limit to accommodate noisy feature hypercubes.

Testing was performed to compare the fuzzy hypercube classifier with fuzzy ART using
Iris Flower and breast cancer standard data sets. The fuzzy hypercube classifier displayed
better tolerance to noise in these tests.

The fuzzy hypercube classifier was also tested with Switchboard and Greenflag data sets.
The performance for 8 speaker groups is 67% overall correct classification.

32

6. BIBLIOGRAPHY

[1] J. Bezdek and S. Pal (Eds.), Fuzzy Models For Pattern Recognition, IEEE Press
(1992).

[2] G. Carpenter and S. Grossberg, "ART2: Self-organization of Stable Category
Recognition Codes for Analog Input Patterns," Applied Optics, Vol. 26, No. 23,
pp. 4919-4930 (1987).

[3] G. Carpenter and S. Grossberg, "ART3: Hierarchical Search Using Chemical
Transmitters in Self-Organizing Pattern Recognition Architectures," Neural
Networks, Vol. 3, pp. 129-152 (1990).

[4] G. Carpenter, et al. , "ART and ARTMAP Neural Networks for Applications:
Self-Organizing Learning, Recognition, and Prediction," Tech Report CAS/CNS-
96-009 (1996).

[5] G. Carpenter and S. Grossberg, "Learning, Categorization, Rule Formation, and
Prediction by Fuzzy Neural Networks," Tech Report CAS/CNS-94-028 (1994).

[6] G. Carpenter, S. Grossberg and D. Rosen, "Fuzzy ART: An Adaptive Resonance
Algorithm for Rapid, Stable Classification of Analog Patterns," Tech Report
CAS/CNS-TR-91-006 (1991).

[7] G. Carpenter and M. Gjaja, "Fuzzy ART Choice Functions," CAS/CNS-TR-93-
060 (1993).

[8] P. Devijver and J. Kittler, Pattern Recognition A Statistical Approach, Prentice
Hall (1982).

[9] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications,
Academic Press (1980).

[10] L. Franks, Signal Theory, Prentice Hall, Englewood Cliffs, NJ, Ch. 2 (1969).

[11] M.M. Gupta and E. Sanchez, Approximate Reasoning in Decision Analysis,
North-Holland (1982).

[12] J. Karakowski, "A Fuzzy Expert System for Real Time Sidelobe Suppression,"
24th Asilomar Conference on Signals, Systems, and Computers (1990).

[13] J. Karakowski, "An Automatic Text-Independent Speaker Recognition System,"
26th Asilomar Conference on Signals, Systems, and Computers (1992).

33

[14] J. Karakowski, "Communication Net Sorting: An Automatic Text Independent
Speaker Recognition System," US Army CECOM Report CECOM/EW-TR- 92-2
(1992).

[15] J. Karakowski and H. Phu, "Text Independent Speaker Recognition Using a Fuzzy
Hypercube Classifier," US Army CECOM Report, CECOM-TR-98-5 (Oct 1998).

[16] J. Karakowski, "Final Report of MMB Signal Processing Unit," US Army
CECOM Report, CECOM/EW-TR-90-4 (1990).

[17] T. Kasuba, "Simplified Fuzzy ARTMAP," AI Expert, Nov. 1993.

[18] R. Krishnapuram and J.M. Keller, " A Possibilistic Approach to Clustering,"
IEEE Trans. Fuzzy Systems, Vol. 1, No. 2 (1993).

[19] Y. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley
Publishing Company, Inc., New York (1989).

[20] S.V. Pellisier, "Open-Set, Text-Independent Speaker Recognition," Thesis,
AFIT/GE/ENG/95D, Air Force Institute of Technology, WPAFB, Ohio (1995).

[21] P.K. Simpson, "Fuzzy Min-Max Neural Networks - Part 2: Clustering," IEEE
Trans Fuzzy Systems, Vol. 1 No. 1 (Feb 1993).

[22] "Switchboard Speaker Evaluation-Training Segments & Conversation Sides and
Test Target & Background Segments," National Institute of Standards and
Technology, Gaithersburg, MD (May 1995).

[23] Rome Air Development Center, Greenflag Data Base.

[24] H. Nii, "Rule-Based Understanding of Signals" in Pattern Directed Inference
Systems, P. Waterman and F. Hayes-Roth (Eds.), Academic Presss (1978).

[25] G. Bantfai, "An Improved Learning Algorithm for the Fuzzy ARTMAP Neural
Network," TR CS-TR-95/10 (1995), Victoria University of Wellington at
TechReports@comp.vuw.ac.nz

[26] D. Aha, Machine Learning Database (1993) at ftp.ics.edu/pub/machine-learning-
databases.

34

Appendix A1 - MATLAB Toplevel Code Listings of SFAM

o^***

%* Simplified Fuzzy ArtMap (SFAM) program *
%* Programmer: Hai Phu *
%* Date: 22/08/96 *
%* *
%* Input data file: Iris.dat *
%* Output data file: Out.dat *
o^* *** *

clear;
Infile = 'h:\matlab\iriscnvt.dat';
Outfile = 'h:\matlab\sfam\out.dat';

fidin = fopen(Infile); % Open a input data file
fidout = fopen(Outfile,'w'); % Open an output file

today = date; time = clock;
fprintf(fid_out,'DATE: %s %2d:%2d\n',today,time(4:5));
fprintf(fid_out,'INPUT DATA FILE: %s \n\n', Infile);

o/0 ******************** start 0f program ********************

m = iris_mm(fid_in);
1 = 0;
Vigilance = .1
while Vigilance <= .9

1 = 1+1;
status = fseek(fid_in,0,'eof); % set indicator to end of file
eof=ftell(fid_in);
status = fseek(fid_in,0,'bof); % reset indicator to beginning of file

% Initialization

Numnodes = 0; pos = 0;
wrong = 0;
count = 1;
Category = 0;

%******************* Read first data set *******************

Data = fscanf(fid_in,,%3f%3f %3f%3f%d/n');
a = Data(l:4)';
InCat(count) = Data(5) + 1;
OutCat(count) = 1; %first data is categorized as one
pos = ftell(fid_in);
b = scale(a,m); % scaling the input
Numnodes = Num_nodes + 1; % create an initial output node.
[Category(Num_nodes), w(Num_nodes,:)] = fnode(b,Num_nodes);

35

%********** Reading input data till end of file *************
while pos < eof

count = count + 1;
Data = fscanf(fid_in,'%3f%3f %3f%3f %d/n');
a = Data(l:4)';
InCat(count) = Data(5) + 1;
pos = ftell(fid_in);
b = scale(a,m); % scaling the input

0/o *************** Hypothesize input data ******************
[node,i] = hypo(Num_nodes,w,b);

0//o ****************** Test hypothesis **********************

[w,switch,Out_Cat(count)] = Test_hyp(node,i,w, Vigilance);

o^***************** QreaiQ new category ********************

if-switch % if never seen this category before
Num_nodes = Numnodes + 1; % then create an output node.
[Category(Num_nodes) , w(Num_nodes,:)] = fnode(b,Num_nodes);
Out_Cat(count) = Num_nodes;

end;
end % end while eof

c^******************** Output routine **********************

fprintf(fid_out,'\n Vigilance = %f\n', Vigilance);

[Pc_ac(I) Pc_cc(I) TJncor(I)] = stat2(In_Cat,Out_Cat,fid_out);
%print out statistics
Values(I) = Vigilance;
Vigilance = Vigilance + .1
clear w Category node; % clear out all vars for next run

end % end while Vigilance

plots(Values,Pc_cc,T_Incor,Pc_ac)
fclose(fidin);
fclose(fidout);

36

Appendix A2 - MATLAB Toplevel Code Listings of FANN

0/***

%* Fuzzy Hypercube Artificial Neural Network program *
%* Programmer: Hai Phu *
%* Date: 22/10/96 *
%* *
%* Input data file: Iris.dat *
%* Output data file: Out.dat *
0/** *

clear;
Infile = 'h:\matlab\iriscnvt.dat';
Outfile = 'h:\matlab\h_annl\out.dat';

fidin = fopen(Infile); % Open a data file
fidout = fopen(Outfile,V); % Open an output file

today = date; time = clock;
fprintf(fid_out,'DATE: %s %2d:%2d\n',today,time(4:5));
fprintf(fid_out,'INPUT DATA FILE: %s \n\n', Infile);

o/0 ******************** §{^{ of oroeram ********************
o^********************** User inputs ************************

runs = 0;

Vig = input('Enter a value for vigilance >');
Gamma = input('Enter a value for gamma > ');

r = input('Enter the Learning Adjustment Factor, r >');
k = input('Enter a value for k > ');

Hv_max = input('Enter the maximum hypercube volumn >');

while Hv max <= 1.5

runs = runs + 1
0/***

m = mm_iris(fid_in);

status = fseek(fid_in,0,'eof); % set indicator to end of file
eof=ftell(fid_in);

37

Status = fseek(fid_in,0,'bof); % reset indicator to beginning of file

% Initialization

Num = 0;
count = 1;

o/0******************* Reacj fjj.st £jata set *******************

%read_iris;

Data = fscanf(fid_in,'%3f %3f %3f %3f %d /n');
a = Data(l:4)';
In_Cat = Data(5)+l;
pos = ftell(fid_in);

a = scale(a,m); % scaling the input

Num = Num + 1; % create an initial output node.
[B(Num,:), Nj(Num)] = anode(a);
Out_Cat(count) = 1; %first data is categorized as one

%********** Reading input data till end of file ***********

while pos < eof
count = count + 1;
Data = fscanf(fid_in,'%3f %3f %3f %3f %d/n');
a = Data(l:4)';
InCat(count) = Data(5) + 1;
pos = ftell(fidin);

a = scale(a,m); % scaling the input

0/o *************** Transform/Fusion layer ******************

for category = 1 :Num
R(category) = Trans(B(category,:),a,Nj(category),Gamma,k);

end;

0/o ************** Hypothesize and test layer ***************

% Test an hypothesis; function test_hyp
[winner,node] = max(R);
Adj = Nc(Nj(node))* Vig;
Out_Cat(count) = node;
Match = winner > Adj;

o/0 ********************** Leam ************************

if Match

38

B(node,:) = learn2(a,B(node,:),r); % Hypercube learning
Nj(node) = Nj(node) + 1;

0/ ********************** Adjust ***********************

Shv = volume(B(node,:));

if Shv > Hv_max % if volume exceeds Hv_max then
delta = (Shv - Hv_max)/Num
B(node,:) = Adjust(B(node,:),delta); % adjust Hypervolume

end;

o/**************** * (^j-gate new category ****************

else % if never seen this category before
Num = Num + 1; % create an output node.
[B(Num,:), Nj(Num)] = Anode(a);
Out_Cat(count) = Num;

end;

end % end while eof

(w******************** Output routine **********************

fprintf(fid_out,'\nVigilance = %f\n',Vig);
fprintf(fid_out,'Gamma = %f; k = %f\n',Gamma,k);
fprintf(fid_out,'Learning adjustment factor r = %f\n',r);
fprintf(fid_out,'Maximum hypercube volume = %f\n',Hv_max);

%save parameters for plotting purposes

[P_ac(runs),P_cc(runs),N_icc(runs)] = stat(In_Cat,Out_Cat,fid_out);

Values(runs) = Hv_max;
Hv_max = Hv_max + 0.25;
clear B category Nj R; % clear out all vars for next run

end %while

plots(Values,P_cc,N_icc,P_ac,'Hv_max');

saveit = input('Do you want to save all working variables ?','s');
if saveit == 'Y' | saveit == 'y'

filename = input('Enter filename -> ','s');
filename = ['h:\matlab\sfam4V filename];
save(filename);

end;

fclose(fid_in);
fclose(fidout);

39

Distribution List

Defense Technical Information Center
ATTN: DTIC-OCC
8725 John J. Kingman Rd., STE 0944
Fort Belvoir, VA 22060-6218
(*Note: 2 DTIC copies will be sent
from STINFO Office, Ft Monmouth, NJ)

Commander, U.S. Army CECOM
R&D Technical Library
Fort Monmouth, NJ 07703-5703
(1) AMSEL-IM-BM-I-L-R (Tech Lib)
(2) AMSEL-IM-BM-I-L-R (STINFO)

Commander, U.S. Army CECOM
Research, Development and Eng. Center
ATTN: AMSEL-RD
Fort Monmouth, NJ 07703-5000

Commander, U.S. Army CECOM
Director, C2SID
ATTN: AMSEL-RD-C2-ED
Fort Monmouth, NJ 07703

Commander, AFRL/CC
1864 4th Street, Suit 1
WPAFB, OH 45433

Director, Rome Research Site
26 Electronic Parkway, Building 106
Rome, NY 13442-4514

Commander, Naval Research Laboratory
Code 1000
Washington DC 20375-5320

Commander, AFIT/CC
2950 P Street
WPAFB, OH 45433-6583

40

